Semantic Approach to Language Structures Presentation for Machine Learning Algorithms Design
نویسنده
چکیده
The problem of establishing transferable language structures is considered. The key idea is developing a synergistic approach combining semantic grammar rules with the machine learning mechanisms of grammar rules extraction from parallel text corpora. The predesigned rules are founded on the unified cognitive structures extracted from the systems of grammar categories of the Russian and English languages and functional roles of language structures in a sentence. Machine learning methods are used to establish the weights of the meaningful language units and structures for probabilistic augmentation of the rule system for syntactic – semantic sentence analysis. The formalism employed for presentation of the English-Russian matches is a unification grammar variant.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملSemantic Convolution Kernels Over Dependency Trees
In recent years, natural language processing techniques have been used more and more in IR. Among other syntactic and semantic parsing are effective methods for the design of complex applications like for example question answering and sentiment analysis. Unfortunately, extracting feature representations suitable for machine learning algorithms from linguistic structures is typically difficult....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006